Sparse signals recovered by non-convex penalty in quasi-linear systems
نویسندگان
چکیده
منابع مشابه
Sparse signals recovered by non-convex penalty in quasi-linear systems
The goal of compressed sensing is to reconstruct a sparse signal under a few linear measurements far less than the dimension of the ambient space of the signal. However, many real-life applications in physics and biomedical sciences carry some strongly nonlinear structures, and the linear model is no longer suitable. Compared with the compressed sensing under the linear circumstance, this nonli...
متن کاملNon-convex Fraction Function Penalty: Sparse Signals Recovered from Quasi-linear Systems
The goal of compressed sensing is to reconstruct a sparse signal under a few linear measurements far less than the dimension of the ambient space of the signal. However, many real-life applications in physics and biomedical sciences carry some strongly nonlinear structures, and the linear model is no longer suitable. Compared with the compressed sensing under the linear circumstance, this nonli...
متن کاملRecovering sparse signals with non-convex penalties and DC programming
This paper considers the problem of recovering a sparse signal representation according to a signal dictionary. This problem is usually formalized as a penalized least-squares problem in which sparsity is usually induced by a l1-norm penalty on the coefficient. Such an approach known as the Lasso or Basis Pursuit Denoising has been shown to perform reasonably well in some situations. However, i...
متن کاملSparse Recovery by Non - Convex Optimization –
In this note, we address the theoretical properties of ∆p, a class of compressed sensing decoders that rely on ℓ p minimization with p ∈ (0, 1) to recover estimates of sparse and compressible signals from incomplete and inaccurate measurements. In particular, we extend the results of Candès, Romberg and Tao [3] and Wojtaszczyk [30] regarding the decoder ∆ 1 , based on ℓ 1 minimization, to ∆p wi...
متن کاملNon-convex Sparse Regularization
We study the regularising properties of Tikhonov regularisation on the sequence space l with weighted, non-quadratic penalty term acting separately on the coefficients of a given sequence. We derive sufficient conditions for the penalty term that guarantee the well-posedness of the method, and investigate to which extent the same conditions are also necessary. A particular interest of this pape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2018
ISSN: 1029-242X
DOI: 10.1186/s13660-018-1652-8